Given a set of items with profits and weights and a knapsack capacity, we study the problem of finding a maximal knapsack packing that minimizes the profit of the selected items. We propose an effective dynamic programming (DP) algorithm which has a pseudo-polynomial time complexity. We demonstrate the equivalence between this problem and the problem of finding a minimal knapsack cover that maximizes the profit of the selected items. In an extensive computational study on a large and diverse set of benchmark instances, we demonstrate that the new DP algorithm outperforms a state-of-the-art commercial mixed-integer programming (MIP) solver applied to the two best performing MIP models from the literature. (C) 2017 Elsevier B.V. All rights reserved.

An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem

Furini Fabio;
2017

Abstract

Given a set of items with profits and weights and a knapsack capacity, we study the problem of finding a maximal knapsack packing that minimizes the profit of the selected items. We propose an effective dynamic programming (DP) algorithm which has a pseudo-polynomial time complexity. We demonstrate the equivalence between this problem and the problem of finding a minimal knapsack cover that maximizes the profit of the selected items. In an extensive computational study on a large and diverse set of benchmark instances, we demonstrate that the new DP algorithm outperforms a state-of-the-art commercial mixed-integer programming (MIP) solver applied to the two best performing MIP models from the literature. (C) 2017 Elsevier B.V. All rights reserved.
2017
Combinatorial optimization
Maximal knapsack packing
Minimal knapsack cover
Dynamic programming
Integer programming
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372561
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 25
social impact