In this work, the influence on the morphology and viscoelastic behavior of polypropylene/clay nanocomposites of clay, in combination with different crystallization rates applied in compression molding, is reported. By deconvolution of differential scanning calorimetry (DSC) melting endotherms, it was found that the slowly cooled samples had slightly higher melting temperatures, and the crystal dimensions decreased progressively with the clay content; while, in contrast, the presence of clay particles had no influence on the crystal dimensions in fast-cooled samples. Dynamic mechanical thermal analysis (DMTA) has shown that above the glass transition temperature, nanocomposites obtained by slow cooling exhibited better mechanical response compared to the fast-cooled samples. The value of dynamic modulus E' of slow-cooled samples increased by similar to 55 % with addition of only 1 wt% clay, which was attributed to the better reinforcing effect achieved during prolonged time of crystallization.

THE EFFECT OF MATRIX MORPHOLOGY ON DYNAMIC-MECHANICAL PROPERTIES OF POLYPROPYLENE/LAYERED SILICATE NANOCOMPOSITES

Sorrentino Andrea
2017

Abstract

In this work, the influence on the morphology and viscoelastic behavior of polypropylene/clay nanocomposites of clay, in combination with different crystallization rates applied in compression molding, is reported. By deconvolution of differential scanning calorimetry (DSC) melting endotherms, it was found that the slowly cooled samples had slightly higher melting temperatures, and the crystal dimensions decreased progressively with the clay content; while, in contrast, the presence of clay particles had no influence on the crystal dimensions in fast-cooled samples. Dynamic mechanical thermal analysis (DMTA) has shown that above the glass transition temperature, nanocomposites obtained by slow cooling exhibited better mechanical response compared to the fast-cooled samples. The value of dynamic modulus E' of slow-cooled samples increased by similar to 55 % with addition of only 1 wt% clay, which was attributed to the better reinforcing effect achieved during prolonged time of crystallization.
2017
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
polypropylene
clay
nanocomposites
morphology
DMTA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact