Tin dioxide (SnO2) nanowires exhibit a strong visible photoluminescence that is not observed in bulk crystalline SnO2. To explain such effect, oxygen vacancies are often invoked without clarifying if they represent the direct origin of luminescence or if their presence triggers other radiative processes. Here we report an investigation of the nature of the visible light emission in SnO2 nanowires, showing that both experimental and theoretical ab initio analyses support the first hypothesis. On the basis of photoluminescence quenching analysis and of first-principles calculations we show that surface bridging oxygen vacancies in SnO2 lead to formation of occupied and empty surface bands whose transition energies are in strong agreement with luminescence features and whose luminescence activity can be switched off by surface adsorption of oxidizing molecules. Finally, we discuss how such findings may explain the decoupling between "electrical-active" and "optical-active" states in SnO 2 gas nanosensors

Direct role of surface oxygen vacancies in visible light emission of tin dioxide nanowires

Lettieri S;
2008

Abstract

Tin dioxide (SnO2) nanowires exhibit a strong visible photoluminescence that is not observed in bulk crystalline SnO2. To explain such effect, oxygen vacancies are often invoked without clarifying if they represent the direct origin of luminescence or if their presence triggers other radiative processes. Here we report an investigation of the nature of the visible light emission in SnO2 nanowires, showing that both experimental and theoretical ab initio analyses support the first hypothesis. On the basis of photoluminescence quenching analysis and of first-principles calculations we show that surface bridging oxygen vacancies in SnO2 lead to formation of occupied and empty surface bands whose transition energies are in strong agreement with luminescence features and whose luminescence activity can be switched off by surface adsorption of oxidizing molecules. Finally, we discuss how such findings may explain the decoupling between "electrical-active" and "optical-active" states in SnO 2 gas nanosensors
2008
Gas nanosensors
Photoluminescence
Radiative processes
Adsorption
Surface states
Oxygen vacancies
Optochemical sensing
Tin Dioxide
SnO2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372740
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact