Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released. Treatment of a rodent model of diabetic cardiomyopathy by inhalation of CaPs loaded with a therapeutic mimetic peptide that we previously demonstrated to improve myocardial contraction resulted in restoration of cardiac function. Translation to a porcine large animal model provides evidence that inhalation of a peptide-loaded CaP formulation is an effective method of targeted administration to the heart. Together, these results demonstrate that inhalation of biocompatible tailored peptide nanocarriers represents a pioneering approach for the pharmacological treatment of heart failure. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works

Inhalation of peptide-loaded nanoparticles improves heart failure

Michele Miragoli;Michele Iafisco;Pierluigi Carullo;Lorenzo Degli Esposti;Francesca Rossi;Gianluigi Condorelli;Anna Tampieri;Daniele Catalucci
2018

Abstract

Peptides are highly selective and efficacious for the treatment of cardiovascular and other diseases. However, it is currently not possible to administer peptides for cardiac-targeting therapy via a noninvasive procedure, thus representing scientific and technological challenges. We demonstrate that inhalation of small (<50 nm in diameter) biocompatible and biodegradable calcium phosphate nanoparticles (CaPs) allows for rapid translocation of CaPs from the pulmonary tree to the bloodstream and to the myocardium, where their cargo is quickly released. Treatment of a rodent model of diabetic cardiomyopathy by inhalation of CaPs loaded with a therapeutic mimetic peptide that we previously demonstrated to improve myocardial contraction resulted in restoration of cardiac function. Translation to a porcine large animal model provides evidence that inhalation of a peptide-loaded CaP formulation is an effective method of targeted administration to the heart. Together, these results demonstrate that inhalation of biocompatible tailored peptide nanocarriers represents a pioneering approach for the pharmacological treatment of heart failure. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
2018
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Istituto di Ricerca Genetica e Biomedica - IRGB
Istituto di Scienza, Tecnologia e Sostenibilità per lo Sviluppo dei Materiali Ceramici - ISSMC (ex ISTEC)
nanoparticle
drug delivery
heart failure
inhalation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/372871
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 128
  • ???jsp.display-item.citation.isi??? ND
social impact