We describe the construction of self-assembled double-decker porphyrin arrays built up from two covalently connected trimeric Zn-porphyrin units that are joined together by metal-coordination bonds with diamine ligands. We used three different types of diamine ligands: 1,4-diaza[2.2.2]bi-cyclooctane (DABCO), 4,4'-bipyridine (BIPY), and 5,15-bis(4-pyridyl)-10,20-diphenylporphyrin (DPYP). The ligands act as pillars, through two axial coordination bonds with the porphyrinic (ZnI)-I-I ions, to block the planes of the porphyrin units in an almost cofacial orientation and inducing the formation of a trigonal prismatic structure. The spectroscopic and photophysical properties of the Zn-trisporphyrin component were determined as well as those of the resulting multimolecular cage-like assemblies. The double-decker assembly with DPYP as the pillars constitutes a nonameric porphyrin aggregate. Although this assembly is thermodynamically less stable than those containing DABCO or BIPY, efficient photoinduced energy transfer occurs (96% yield) from the trisporphyrin base units to the DPYP side walls. The rate of the energy-transfer process is in good agreement with that calculated for a dipole-dipole (Forster) mechanism corrected for the unfavorable orientation geometry of the donor and the axially bound acceptor.
Energy Migration in a Self-Assembled Nonameric Porphyrinic Molecular Box
L Flamigni;B Ventura;
2008
Abstract
We describe the construction of self-assembled double-decker porphyrin arrays built up from two covalently connected trimeric Zn-porphyrin units that are joined together by metal-coordination bonds with diamine ligands. We used three different types of diamine ligands: 1,4-diaza[2.2.2]bi-cyclooctane (DABCO), 4,4'-bipyridine (BIPY), and 5,15-bis(4-pyridyl)-10,20-diphenylporphyrin (DPYP). The ligands act as pillars, through two axial coordination bonds with the porphyrinic (ZnI)-I-I ions, to block the planes of the porphyrin units in an almost cofacial orientation and inducing the formation of a trigonal prismatic structure. The spectroscopic and photophysical properties of the Zn-trisporphyrin component were determined as well as those of the resulting multimolecular cage-like assemblies. The double-decker assembly with DPYP as the pillars constitutes a nonameric porphyrin aggregate. Although this assembly is thermodynamically less stable than those containing DABCO or BIPY, efficient photoinduced energy transfer occurs (96% yield) from the trisporphyrin base units to the DPYP side walls. The rate of the energy-transfer process is in good agreement with that calculated for a dipole-dipole (Forster) mechanism corrected for the unfavorable orientation geometry of the donor and the axially bound acceptor.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.