In the context of mining frequent itemsets, numerous strategies have been proposed to push several types of constraints within the most well known algorithms. In this paper, we integrate the recently proposed ExAnte data reduction technique within the FP-growth algorithm. Together, they result in a very efficient frequent itemset mining algorithm that effectively exploits monotone constraints.

FP-Bonsai: the art of growing and pruning small FP-Trees

Bonchi F;
2004

Abstract

In the context of mining frequent itemsets, numerous strategies have been proposed to push several types of constraints within the most well known algorithms. In this paper, we integrate the recently proposed ExAnte data reduction technique within the FP-growth algorithm. Together, they result in a very efficient frequent itemset mining algorithm that effectively exploits monotone constraints.
2004
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-540-22064-0
Data mining
File in questo prodotto:
File Dimensione Formato  
prod_43755-doc_124912.pdf

solo utenti autorizzati

Descrizione: FP-Bonsai: The Art of Growing and Pruning Small FP-Trees
Tipologia: Versione Editoriale (PDF)
Dimensione 173.51 kB
Formato Adobe PDF
173.51 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact