This work focuses on the fabrication processes and photonic assessment of SiO2-SnO2:Er3+ monoliths. To obtain the crack-free and densified system, the sol-gel derived synthesis protocols and heat-treatment processes were optimized. The absorption measurements were employed to assess the effect of the heat-treatment on the samples and specially to estimate the -OH content. The XRD patterns were used to investigate the crystallization as well as the structure of the monoliths. The emission spectra, performed at different excitation wavelengths, evidence the presence of Er3+ in the SnO2 nanocrystals and the energy transfer from SnO2 to the rare earth ions. In addition, the efficient role of SnO2 nanocrystals as Er3+ sensitizers are also experimentally confirmed in this system.
SiO2-SnO2:Er3+ transparent glass-ceramics: fabrication and photonic assessment
L Zur;A Chiasera;S Varas;D Zonta;M Ferrari
2018
Abstract
This work focuses on the fabrication processes and photonic assessment of SiO2-SnO2:Er3+ monoliths. To obtain the crack-free and densified system, the sol-gel derived synthesis protocols and heat-treatment processes were optimized. The absorption measurements were employed to assess the effect of the heat-treatment on the samples and specially to estimate the -OH content. The XRD patterns were used to investigate the crystallization as well as the structure of the monoliths. The emission spectra, performed at different excitation wavelengths, evidence the presence of Er3+ in the SnO2 nanocrystals and the energy transfer from SnO2 to the rare earth ions. In addition, the efficient role of SnO2 nanocrystals as Er3+ sensitizers are also experimentally confirmed in this system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.