An optical system for the automatic recalibration of large machine tools during the machining process has been developed. The system provides an error signal during operation in order to compensate for structural deformations of axis and sliding parts. Those signals are used to reach a global positioning error below 50 microns on 3-axis translation stages, having range of several meters. One collimated diode laser beam has been mounted to the machining table reference system. Three resistive-type 2D-position-sensing devices are used to locate the beam on each axis. Before the first two sensors in the optical path, the beam is split by a wedge pentaprism in two secondary beams. The first one propagates linearly along the sensor for the displacement measurement. The second one is deflected with a fixed 90° angle and defines the sampling direction of the next axis. By duplicating the system using a second pentaprism on the latter deflected beam, three axis are monitored. In order to avoid any active electronic devises on the milling head, a passive corner cube is placed on the side of the head. Laser beam is then back reflected on a final position-sensitive sensor mounted in proximity of the second pentaprism. Additional channels consisting in laser beams back-reflected by mirrors on similar position sensing devices were used to acquire angular measurements as well. The tests performed on the prototype demonstrate the capability of mapping the actual deviations from the ideal linear translation with an error of 25 um along the full axis travel.

Optical system for the calibration and verification of correct axis positioning in medium-big sized milling boring machines

Fedel M;Cocola L;Poletto L
2015

Abstract

An optical system for the automatic recalibration of large machine tools during the machining process has been developed. The system provides an error signal during operation in order to compensate for structural deformations of axis and sliding parts. Those signals are used to reach a global positioning error below 50 microns on 3-axis translation stages, having range of several meters. One collimated diode laser beam has been mounted to the machining table reference system. Three resistive-type 2D-position-sensing devices are used to locate the beam on each axis. Before the first two sensors in the optical path, the beam is split by a wedge pentaprism in two secondary beams. The first one propagates linearly along the sensor for the displacement measurement. The second one is deflected with a fixed 90° angle and defines the sampling direction of the next axis. By duplicating the system using a second pentaprism on the latter deflected beam, three axis are monitored. In order to avoid any active electronic devises on the milling head, a passive corner cube is placed on the side of the head. Laser beam is then back reflected on a final position-sensitive sensor mounted in proximity of the second pentaprism. Additional channels consisting in laser beams back-reflected by mirrors on similar position sensing devices were used to acquire angular measurements as well. The tests performed on the prototype demonstrate the capability of mapping the actual deviations from the ideal linear translation with an error of 25 um along the full axis travel.
2015
Istituto di fotonica e nanotecnologie - IFN
machine calibration
optical metrology
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact