Diatoms microalgae represent a natural source of highly porous biosilica shells (frustules) with promising applications in a wide range of technological fields. Functionalization of diatoms' frustules with tailored luminescent molecules can be envisaged as a convenient, scalable biotechnological route to new light emitting silica nanostructured materials. Here we report a straightforward protocol for the in vivo modification of Thalassiosira weissflogii diatoms' frustules with a red emitting organic dye based on thienyl, benzothiadiazolyl and phenyl units. The metabolic insertion of the dye molecules into the diatoms shells, combined with an acidic-oxidative isolation protocol of the resulting dye stained biosilica, represents a novel strategy to develop highly porous luminescent biosilica nanostructures with promising applications in photonics.

In vivo doped biosilica from living Thalassiosira weissflogii diatoms with a triethoxysilyl functionalized red emitting fluorophore

Cicco S;
2018

Abstract

Diatoms microalgae represent a natural source of highly porous biosilica shells (frustules) with promising applications in a wide range of technological fields. Functionalization of diatoms' frustules with tailored luminescent molecules can be envisaged as a convenient, scalable biotechnological route to new light emitting silica nanostructured materials. Here we report a straightforward protocol for the in vivo modification of Thalassiosira weissflogii diatoms' frustules with a red emitting organic dye based on thienyl, benzothiadiazolyl and phenyl units. The metabolic insertion of the dye molecules into the diatoms shells, combined with an acidic-oxidative isolation protocol of the resulting dye stained biosilica, represents a novel strategy to develop highly porous luminescent biosilica nanostructures with promising applications in photonics.
2018
Istituto di Chimica dei Composti OrganoMetallici - ICCOM -
biomaterial
luminescence
microstructure
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact