A novel antifouling coating based on the polymerization of a polymerisable bicontinuous microemulsion (PBM) was developed and applied for commercially available membranes for textile wastewater treatment. PBM coating was produced by polymerizing, on a polyethersulfone (PES) membrane, a bicontinuous microemulsion, realized by finely tuning its properties in terms of chemical composition and polymerization temperature. In particular, the PBM was prepared by using, as the surfactant component, inexpensive and commercially available dodecyltrimethylammonium bromide (DTAB). The coating exhibited a more hydrophilic and a smoother surface in comparison to uncoated PES surface, making the produced PBM membranes more resistant and less prone to be affected by fouling. The anti-fouling potential of PBM membranes was assessed by using humic acid (HA) as a model foulant, evaluating the water permeability decrease as an indicator of the fouling propensity of the membranes. PBM membrane performances in terms of dye rejection, when applied for model textile wastewater treatment, were also evaluated and compared to PES commercial ones. The PBM membranes were finally successfully scaled-up (total membrane area 0.33 m2) and applied in a pilot membrane bioreactor (MBR) unit for the treatment of real textile wastewater.

Novel low-fouling membranes from lab to pilot application in textile wastewater treatment

Galiano F;Figoli A
2018

Abstract

A novel antifouling coating based on the polymerization of a polymerisable bicontinuous microemulsion (PBM) was developed and applied for commercially available membranes for textile wastewater treatment. PBM coating was produced by polymerizing, on a polyethersulfone (PES) membrane, a bicontinuous microemulsion, realized by finely tuning its properties in terms of chemical composition and polymerization temperature. In particular, the PBM was prepared by using, as the surfactant component, inexpensive and commercially available dodecyltrimethylammonium bromide (DTAB). The coating exhibited a more hydrophilic and a smoother surface in comparison to uncoated PES surface, making the produced PBM membranes more resistant and less prone to be affected by fouling. The anti-fouling potential of PBM membranes was assessed by using humic acid (HA) as a model foulant, evaluating the water permeability decrease as an indicator of the fouling propensity of the membranes. PBM membrane performances in terms of dye rejection, when applied for model textile wastewater treatment, were also evaluated and compared to PES commercial ones. The PBM membranes were finally successfully scaled-up (total membrane area 0.33 m2) and applied in a pilot membrane bioreactor (MBR) unit for the treatment of real textile wastewater.
2018
Istituto per la Tecnologia delle Membrane - ITM
textile wastewater treatment
membrane
PBM coating
MBR
File in questo prodotto:
File Dimensione Formato  
prod_384018-doc_131038.pdf

solo utenti autorizzati

Descrizione: Novel low-fouling membranes from lab to pilot application in textile wastewater treatment
Tipologia: Versione Editoriale (PDF)
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373583
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? ND
social impact