In this work, novel composites based on poly(epsilon-caprolactone) (PCL) were prepared and characterized in terms of morphological, thermal, rheological and mechanical properties. Hollow glass microspheres (HGM), alone or surface modified by treatment with (3-aminopropyl)triethoxysilane (APTES) in order to enhance the compatibility between the inorganic particles and the polymer matrix, were used to obtain lightweight composites with improved properties. The silanization treatment implies a good dispersion of filler particles in the matrix and an enhanced filler-polymer adhesion. The addition of HGM to PCL has relevant implications on the rheological and mechanical properties enhancing the stiffness of the material. Furthermore, the presence of HGM strongly interferes with the crystallization behavior and thermo-oxidative degradation of PCL. The increase of PCL crystallization rate was observed as a function of the HGM amount in the composites. Finally, rotational molding tests demonstrated the possibility of successfully producing manufactured goods in PCL and PCL-based composites on both a laboratory and industrial scale.

Lightweight Poly(epsilon-Caprolactone) Composites with Surface Modified Hollow Glass Microspheres for Use in Rotational Molding: Thermal, Rheological and Mechanical Properties

Vignali Adriano;Iannace Salvatore;Utzeri Roberto;Stagnaro Paola;Bertini Fabio
2019

Abstract

In this work, novel composites based on poly(epsilon-caprolactone) (PCL) were prepared and characterized in terms of morphological, thermal, rheological and mechanical properties. Hollow glass microspheres (HGM), alone or surface modified by treatment with (3-aminopropyl)triethoxysilane (APTES) in order to enhance the compatibility between the inorganic particles and the polymer matrix, were used to obtain lightweight composites with improved properties. The silanization treatment implies a good dispersion of filler particles in the matrix and an enhanced filler-polymer adhesion. The addition of HGM to PCL has relevant implications on the rheological and mechanical properties enhancing the stiffness of the material. Furthermore, the presence of HGM strongly interferes with the crystallization behavior and thermo-oxidative degradation of PCL. The increase of PCL crystallization rate was observed as a function of the HGM amount in the composites. Finally, rotational molding tests demonstrated the possibility of successfully producing manufactured goods in PCL and PCL-based composites on both a laboratory and industrial scale.
2019
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
polymer matrix composites
poly(epsilon-caprolactone)
hollow glass microspheres
rotational molding
silanization
rheological properties
mechanical properties
morphology
File in questo prodotto:
File Dimensione Formato  
prod_413340-doc_161822.pdf

solo utenti autorizzati

Descrizione: pdf articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 7.16 MB
Formato Adobe PDF
7.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373640
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? ND
social impact