We present a mathematical model describing the evolution ofsea ice andmeltwater during summer. The system is described by two coupled partial differential equations for the ice thickness h and pond depth w fields. We test the sensitivity of the model to variations of parameters controlling fluid-dynamic processes at the pond level, namely the variation of turbulent heat flux with pond depth and the lateral melting of ice enclosing a pond. We observe that different heat flux scalings determine different rates of total surface ablations, while the system is relatively robust in terms of probability distributions of pond surface areas. Finally, we study pond morphology in terms of fractal dimensions, showing that the role of lateral melting is minor, whereas there is evidence of an impact from the initial sea ice topography.

Modelling sea ice and melt ponds evolution: sensitivity to microscale heat transfer mechanisms

Andrea Scagliarini
Primo
;
Daniela Mansutti;Federico Toschi
2020

Abstract

We present a mathematical model describing the evolution ofsea ice andmeltwater during summer. The system is described by two coupled partial differential equations for the ice thickness h and pond depth w fields. We test the sensitivity of the model to variations of parameters controlling fluid-dynamic processes at the pond level, namely the variation of turbulent heat flux with pond depth and the lateral melting of ice enclosing a pond. We observe that different heat flux scalings determine different rates of total surface ablations, while the system is relatively robust in terms of probability distributions of pond surface areas. Finally, we study pond morphology in terms of fractal dimensions, showing that the role of lateral melting is minor, whereas there is evidence of an impact from the initial sea ice topography.
2020
Istituto Applicazioni del Calcolo ''Mauro Picone''
978-3-030-38668-9
Climate change
Glaciology
Oceanography
Sea ice
Mathematical modelling
File in questo prodotto:
File Dimensione Formato  
scagliarini-et-al-indam-series2020.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 589.53 kB
Formato Adobe PDF
589.53 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact