Different classes of wastes, namely wooden wastes, plastic fractions from automotive shredded residues, and glass fiber reinforced composite wastes obtained from dismantled wind turbines blades were analyzed in view of their possible recycling. Wooden wastes included municipal bulky wastes, construction and demolition wastes, and furniture wastes. The applied characterization protocol, based on Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) mode, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX), and thermogravimetric analysis (TG) coupled with FTIR spectrometry for the investigation of the evolved gases, revealed that the selected classes of wastes are very complex and heterogeneous materials, containing different impurities that can represent serious obstacles toward their reuse/recycling. Critical parameters were analyzed and discussed, and recommendations were reported for a safe and sustainable recycling of these classes of materials.

Critical Factors for the Recycling of Different End-of-Life Materials: Wood Wastes, Automotive Shredded Residues, and Dismantled Wind Turbine Blades

Castaldo Rachele;De Falco Francesca;Avolio Roberto;Cocca Mariacristina;Di Pace Emilia;Errico Maria Emanuela;Gentile Gennaro;Avella Maurizio
2019

Abstract

Different classes of wastes, namely wooden wastes, plastic fractions from automotive shredded residues, and glass fiber reinforced composite wastes obtained from dismantled wind turbines blades were analyzed in view of their possible recycling. Wooden wastes included municipal bulky wastes, construction and demolition wastes, and furniture wastes. The applied characterization protocol, based on Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) mode, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDX), and thermogravimetric analysis (TG) coupled with FTIR spectrometry for the investigation of the evolved gases, revealed that the selected classes of wastes are very complex and heterogeneous materials, containing different impurities that can represent serious obstacles toward their reuse/recycling. Critical parameters were analyzed and discussed, and recommendations were reported for a safe and sustainable recycling of these classes of materials.
2019
Istituto per i Polimeri, Compositi e Biomateriali - IPCB
recycling
municipal bulky waste
end-of-life vehicles
characterization
FTIR
evolved gas analysis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373666
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact