In the present work, we analyze the hp version of virtual element methods for the 2D Poisson problem. We prove exponential convergence of the energy error employing sequences of polygonal meshes geometrically refined, thus extending the classical choices for the decomposition in the hp finite element framework to very general decomposition of the domain. A new stabilization for the discrete bilinear form with explicit bounds in h and p is introduced. Numerical experiments validate the theoretical results. We also exhibit a numerical comparison between hp virtual elements and hp finite elements.

Exponential convergence of the hp virtual element method in presence of corner singularities

L Beirao da Veiga;A Russo
2018

Abstract

In the present work, we analyze the hp version of virtual element methods for the 2D Poisson problem. We prove exponential convergence of the energy error employing sequences of polygonal meshes geometrically refined, thus extending the classical choices for the decomposition in the hp finite element framework to very general decomposition of the domain. A new stabilization for the discrete bilinear form with explicit bounds in h and p is introduced. Numerical experiments validate the theoretical results. We also exhibit a numerical comparison between hp virtual elements and hp finite elements.
2018
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
65N12
65N15
65N30
65N50
File in questo prodotto:
File Dimensione Formato  
prod_388788-doc_133904.pdf

accesso aperto

Descrizione: Exponential convergence of the hp virtual element method in presence of corner singularities
Tipologia: Versione Editoriale (PDF)
Dimensione 849.91 kB
Formato Adobe PDF
849.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/373781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 25
social impact