In this paper we extend the state-of-art of the constraints that can be pushed in a frequent pattern computation. We introduce a new class of tough constraints, namely Loose Anti-monotone constraints, and we deeply characterize them by showing that they are a superclass of convertible anti-monotone constraints (e.g. constraints on average or median) and that they model tougher constraints (e.g. constraints on variance or standard deviation). Then we show how these constraints can be exploited in a level-wise Apriori-like computation by means of a new data-reduction technique: the resulting algorithm outperforms previous proposals for convertible constraints, and it is to treat much tougher constraints with the same effectiveness of easier ones.

Pushing tougher constraints in frequent pattern mining

Bonchi F;Lucchese C
2005

Abstract

In this paper we extend the state-of-art of the constraints that can be pushed in a frequent pattern computation. We introduce a new class of tough constraints, namely Loose Anti-monotone constraints, and we deeply characterize them by showing that they are a superclass of convertible anti-monotone constraints (e.g. constraints on average or median) and that they model tougher constraints (e.g. constraints on variance or standard deviation). Then we show how these constraints can be exploited in a level-wise Apriori-like computation by means of a new data-reduction technique: the resulting algorithm outperforms previous proposals for convertible constraints, and it is to treat much tougher constraints with the same effectiveness of easier ones.
2005
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-540-26076-9
Database Applications
Frequent Itemsets Mining
Constrained Mining
File in questo prodotto:
File Dimensione Formato  
prod_43835-doc_126065.pdf

solo utenti autorizzati

Descrizione: Pushing tougher constraints in frequent pattern mining
Tipologia: Versione Editoriale (PDF)
Dimensione 242.64 kB
Formato Adobe PDF
242.64 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37401
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact