We consider bounded solutions of the nonlocal Allen-Cahn equation $$ (-\Delta)^s u=u-u^3\qquad{\mbox{ in }}{\mathbb{R}}^3,$$ under the monotonicity condition $\partial_{x_3}u>0$ and in the genuinely nonlocal regime in which~$s\in\left(0,\frac12\right)$. Under the limit assumptions $$ \lim_{x_n\to-\infty} u(x',x_n)=-1\quad{\mbox{ and }}\quad \lim_{x_n\to+\infty} u(x',x_n)=1,$$ it has been recently shown that~$u$ is necessarily $1$D, i.e. it depends only on one Euclidean variable. The goal of this paper is to obtain a similar result without assuming such limit conditions. This type of results can be seen as nonlocal counterparts of the celebrated conjecture formulated by Ennio De Giorgi.

A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime

E Valdinoci
2018

Abstract

We consider bounded solutions of the nonlocal Allen-Cahn equation $$ (-\Delta)^s u=u-u^3\qquad{\mbox{ in }}{\mathbb{R}}^3,$$ under the monotonicity condition $\partial_{x_3}u>0$ and in the genuinely nonlocal regime in which~$s\in\left(0,\frac12\right)$. Under the limit assumptions $$ \lim_{x_n\to-\infty} u(x',x_n)=-1\quad{\mbox{ and }}\quad \lim_{x_n\to+\infty} u(x',x_n)=1,$$ it has been recently shown that~$u$ is necessarily $1$D, i.e. it depends only on one Euclidean variable. The goal of this paper is to obtain a similar result without assuming such limit conditions. This type of results can be seen as nonlocal counterparts of the celebrated conjecture formulated by Ennio De Giorgi.
2018
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
35B65
35R11
82B26
File in questo prodotto:
File Dimensione Formato  
prod_383526-doc_130840.pdf

solo utenti autorizzati

Descrizione: A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime
Tipologia: Versione Editoriale (PDF)
Dimensione 496.56 kB
Formato Adobe PDF
496.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/374095
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact