We explore the possibility of modifying the classical Gauss free energy functional used in capillarity theory by considering surface tension energies of nonlocal type. The corresponding variational principles lead to new equilibrium conditions which are compared to the mean curvature equation and Young's law found in classical capillarity theory. As a special case of this family of problems we recover a nonlocal relative isoperimetric problem of geometric interest.

Capillarity problems with nonlocal surface tension energies

E Valdinoci
2017

Abstract

We explore the possibility of modifying the classical Gauss free energy functional used in capillarity theory by considering surface tension energies of nonlocal type. The corresponding variational principles lead to new equilibrium conditions which are compared to the mean curvature equation and Young's law found in classical capillarity theory. As a special case of this family of problems we recover a nonlocal relative isoperimetric problem of geometric interest.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
Capillarity problems
nonlocal perimeter
regularity results
File in questo prodotto:
File Dimensione Formato  
prod_383531-doc_130843.pdf

solo utenti autorizzati

Descrizione: Capillarity problems with nonlocal surface tension energies
Tipologia: Versione Editoriale (PDF)
Dimensione 741.47 kB
Formato Adobe PDF
741.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/374100
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact