We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers. We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.

Rigidity of critical points for a nonlocal Ohta-Kawasaki energy

E Valdinoci
2017

Abstract

We investigate the shape of critical points for a free energy consisting of a nonlocal perimeter plus a nonlocal repulsive term. In particular, we prove that a volume-constrained critical point is necessarily a ball if its volume is sufficiently small with respect to its isodiametric ratio, thus extending a result previously known only for global minimizers. We also show that, at least in one-dimension, there exist critical points with arbitrarily small volume and large isodiametric ratio. This example shows that a constraint on the diameter is, in general, necessary to establish the radial symmetry of the critical points.
2017
Istituto di Matematica Applicata e Tecnologie Informatiche - IMATI -
critical points
long-range interactions
Otha-Kawasaki functional
symmetry results
File in questo prodotto:
File Dimensione Formato  
prod_383533-doc_156222.pdf

solo utenti autorizzati

Descrizione: Rigidity of critical points for a nonlocal Ohta-Kawasaki energy
Tipologia: Versione Editoriale (PDF)
Dimensione 657.35 kB
Formato Adobe PDF
657.35 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/374102
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact