Community discovery is one of the most studied problems in network science. In recent years, many works have focused on discovering communities in temporal networks, thus identifying dynamic communities. Interestingly, dynamic communities are not mere sequences of static ones; new challenges arise from their dynamic nature. Despite the large number of algorithms introduced in the literature, some of these challenges have been overlooked or little studied until recently. In this chapter, we will discuss some of these challenges and recent propositions to tackle them. We will, among other topics, discuss of community events in gradually evolving networks, on the notion of identity through change and the ship of Theseus paradox, on dynamic communities in different types of networks including link streams, on the smoothness of dynamic communities, and on the different types of complexity of algorithms for their discovery. We will also list available tools and libraries adapted to work with this problem.

Challenges in community discovery on temporal networks

Rossetti G
2019

Abstract

Community discovery is one of the most studied problems in network science. In recent years, many works have focused on discovering communities in temporal networks, thus identifying dynamic communities. Interestingly, dynamic communities are not mere sequences of static ones; new challenges arise from their dynamic nature. Despite the large number of algorithms introduced in the literature, some of these challenges have been overlooked or little studied until recently. In this chapter, we will discuss some of these challenges and recent propositions to tackle them. We will, among other topics, discuss of community events in gradually evolving networks, on the notion of identity through change and the ship of Theseus paradox, on dynamic communities in different types of networks including link streams, on the smoothness of dynamic communities, and on the different types of complexity of algorithms for their discovery. We will also list available tools and libraries adapted to work with this problem.
2019
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
978-3-030-23495-9
Dynamic community discovery
File in questo prodotto:
File Dimensione Formato  
prod_415659-doc_146450.pdf

accesso aperto

Descrizione: Challenges in community discovery on temporal networks
Tipologia: Versione Editoriale (PDF)
Dimensione 348.02 kB
Formato Adobe PDF
348.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/374259
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact