Waste paper is an environmentally friendly source of cellulosic material. Here we propose a new treatment based on nanocrystalline cellulose (CNC) for paper preservation and consolidation. Suspensions of CNC were prepared by sulfuric acid hydrolysis using waste paper as cellulose source (CNCWP) and compared with CNC from cotton linter (CNCCL). Both CNCs were obtained with good yield, showing high crystallinity index and comparable morphology, as demonstrated by DLS-ELS, XRD, FTIR, Raman and TEM analyses. CNCs were mixed with silver nanoparticles (CNC/Ag) and their biocidal activity was tested against Escherichia coli. and Bacillus subtilis, measuring the minimum inhibitory concentration. CNCs were exploited as treatments for biocidal activity and consolidation on Whatman paper. The presence of silver nanoparticles doesn't affect aesthetic appearance of the original paper and prevents the growth of Aspergillus niger fungus. Mechanical tests demonstrated that the coatings by CNC based products improve stretch and toughness of the paper support.

Ag-functionalized nanocrystalline cellulose for paper preservation and strengthening

Lazzarini Laura;
2020

Abstract

Waste paper is an environmentally friendly source of cellulosic material. Here we propose a new treatment based on nanocrystalline cellulose (CNC) for paper preservation and consolidation. Suspensions of CNC were prepared by sulfuric acid hydrolysis using waste paper as cellulose source (CNCWP) and compared with CNC from cotton linter (CNCCL). Both CNCs were obtained with good yield, showing high crystallinity index and comparable morphology, as demonstrated by DLS-ELS, XRD, FTIR, Raman and TEM analyses. CNCs were mixed with silver nanoparticles (CNC/Ag) and their biocidal activity was tested against Escherichia coli. and Bacillus subtilis, measuring the minimum inhibitory concentration. CNCs were exploited as treatments for biocidal activity and consolidation on Whatman paper. The presence of silver nanoparticles doesn't affect aesthetic appearance of the original paper and prevents the growth of Aspergillus niger fungus. Mechanical tests demonstrated that the coatings by CNC based products improve stretch and toughness of the paper support.
2020
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
Crystalline nanocellulose
Silver nanoparticles
Waste paper
Biocidal activity
Paper strengthening
Paper protection
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/374268
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? ND
social impact