In this work, we show that modulating the fractal dimension of nanoporous gold allows its effective dielectric response to be tailored over a wide spectral range of infrared wavelengths. In particular, the plasma edge and effective plasma frequency depend linearly on the fractal dimension, which can be controlled by varying the pore and ligament sizes. Importantly, the fractal porous metal exhibits superior plasmonic properties compared to its bulk counterpart. These properties, combined with a longer skin depth on the order of 100-200 nm, enables the penetration of optical energy deep into the nanopores where molecules can be loaded, thus, achieving more effective light-matter coupling. These findings may open new pathways to engineering the optical response of fractal-like or self-similar metamaterials without the need for sophisticated lithographic patterning.
Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared
Cattarin S;
2018
Abstract
In this work, we show that modulating the fractal dimension of nanoporous gold allows its effective dielectric response to be tailored over a wide spectral range of infrared wavelengths. In particular, the plasma edge and effective plasma frequency depend linearly on the fractal dimension, which can be controlled by varying the pore and ligament sizes. Importantly, the fractal porous metal exhibits superior plasmonic properties compared to its bulk counterpart. These properties, combined with a longer skin depth on the order of 100-200 nm, enables the penetration of optical energy deep into the nanopores where molecules can be loaded, thus, achieving more effective light-matter coupling. These findings may open new pathways to engineering the optical response of fractal-like or self-similar metamaterials without the need for sophisticated lithographic patterning.File | Dimensione | Formato | |
---|---|---|---|
prod_391300-doc_135199.pdf
solo utenti autorizzati
Descrizione: Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.6 MB
Formato
Adobe PDF
|
2.6 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.