It is well recognized to ascribe the anomalous cross-field conductivity inside Hall-effect thrusters to fluctuation-induced transport due to gradient-driven instabilities (Rayleigh or electron drift) and to electron-wall interaction (near-wall conductivity). In this letter, we have performed numerical experiments showing the possibility of another mechanism inducing azimuthal fluctuations: the lateral sheath instability. It is created by a negative differential resistance of the current-voltage I-V characteristic of the floating wall as a consequence of high secondary electron emission. The contribution from this effect to the anomalous axial current is calculated and it accounts of more than 80% of the experimental value.
Anomalous Transport induced by Sheath Instability in Hall Effect Thrusters
F Taccogna;S Longo;M Capitelli;
2009
Abstract
It is well recognized to ascribe the anomalous cross-field conductivity inside Hall-effect thrusters to fluctuation-induced transport due to gradient-driven instabilities (Rayleigh or electron drift) and to electron-wall interaction (near-wall conductivity). In this letter, we have performed numerical experiments showing the possibility of another mechanism inducing azimuthal fluctuations: the lateral sheath instability. It is created by a negative differential resistance of the current-voltage I-V characteristic of the floating wall as a consequence of high secondary electron emission. The contribution from this effect to the anomalous axial current is calculated and it accounts of more than 80% of the experimental value.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.