A general trend towards surface reconstructions which eliminate open facets in favour of close-packed facets is found for a wide class of A@B nanoalloys with atomically thin shells (B-skin structures), by means of a combination of atomistic and ab initio density-functional calculations. This class comprises Co@Au, Co@Pt, Ni@Pt, Co@Ag, Ni@Ag, Cu@Ag, Cu@Au, Rh@Au, Ni@Rh and Ni@Pd nanoalloys, in which core atoms are smaller than shell atoms. The reconstruction can induce a global restructuring of the nanoparticles, with different parts transforming in a concerted way and causing the emergence of pyritohedral structures from fcc nanoalloys, and of chiral decahedra. The instability of open facets is rationalized in terms of the equilibration of atomic pressures in strained structures. The surface reconstruction can have important effects on nanoalloy properties, as shown for hydrogen adsorption on Ni@Pd.

Strain-induced restructuring of the surface in core@shell nanoalloys

Ferrando Riccardo
2016

Abstract

A general trend towards surface reconstructions which eliminate open facets in favour of close-packed facets is found for a wide class of A@B nanoalloys with atomically thin shells (B-skin structures), by means of a combination of atomistic and ab initio density-functional calculations. This class comprises Co@Au, Co@Pt, Ni@Pt, Co@Ag, Ni@Ag, Cu@Ag, Cu@Au, Rh@Au, Ni@Rh and Ni@Pd nanoalloys, in which core atoms are smaller than shell atoms. The reconstruction can induce a global restructuring of the nanoparticles, with different parts transforming in a concerted way and causing the emergence of pyritohedral structures from fcc nanoalloys, and of chiral decahedra. The instability of open facets is rationalized in terms of the equilibration of atomic pressures in strained structures. The surface reconstruction can have important effects on nanoalloy properties, as shown for hydrogen adsorption on Ni@Pd.
2016
Istituto dei Materiali per l'Elettronica ed il Magnetismo - IMEM
BIMETALLIC NANOPARTICLES; GLOBAL OPTIMIZATION; CATALYSTS; CLUSTERS; TRANSITION; REDUCTION; DESIGN; ORDER
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 75
  • ???jsp.display-item.citation.isi??? ND
social impact