of main observation and conclusion Catalytic hydrogenation of esters is essential for the sustainable production of alcohols in organic synthesis and chemical industry. Herein, we describe the first non-noble metal catalytic system that enables an efficient hydrogenation of non-activated esters to alcohols in the absence of phosphine ligands (with a maximum turnover number of 2391). The general applicability of this protocol was demonstrated by the high-yielding hydrogenation of 39 ester substrates including aromatic/aliphatic esters, lactones, polyesters and various pharmaceutical molecules.

General and Phosphine-Free Cobalt-Catalyzed Hydrogenation of Esters to Alcohols

Ferraccioli Raffaella;
2019

Abstract

of main observation and conclusion Catalytic hydrogenation of esters is essential for the sustainable production of alcohols in organic synthesis and chemical industry. Herein, we describe the first non-noble metal catalytic system that enables an efficient hydrogenation of non-activated esters to alcohols in the absence of phosphine ligands (with a maximum turnover number of 2391). The general applicability of this protocol was demonstrated by the high-yielding hydrogenation of 39 ester substrates including aromatic/aliphatic esters, lactones, polyesters and various pharmaceutical molecules.
2019
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Hydrogenation
ester
Cobalt
pincer ligand
heterocyclic carbene
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375772
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact