Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca fluxes, ?-smooth muscle actin [?-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1?, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) weremarkedly higher in SSc than control fibroblasts. Moreover, increased aSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.

Searching novel therapeutic targets for scleroderma: P2X7-receptor is UP-regulated and promotes a fibrogenic phenotype in systemic sclerosis fibroblasts

DelRy S;Cabiati M;Morales MA;
2017

Abstract

Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca fluxes, ?-smooth muscle actin [?-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1?, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) weremarkedly higher in SSc than control fibroblasts. Moreover, increased aSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.
2017
Istituto di Fisiologia Clinica - IFC
Systemic sclerosis
P2X7 receptor
Real-Time PCR
cytokine
connective tissue growth factor
extracellular signal-regulated kinases activation
File in questo prodotto:
File Dimensione Formato  
prod_413002-doc_169082.pdf

accesso aperto

Descrizione: Searching Novel Therapeutic Targets for Scleroderma..
Tipologia: Versione Editoriale (PDF)
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375821
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact