The present contribution focus on eco-composites based on a commercial bio-polyester (PBAT) and high amounts of raw HFs. To promote the adhesion between the polyester matrix and the fibrous reinforcement, the fiber surface was treated with suitable coupling agents. Two different experimental strategies were explored: i) chemical modification of HFs by using PBAT macrocyclic oligomers (MCOs) as the coupling agent [1]; and ii) plasma treatment through a novel soft plasma jet device (developed by Nadir SrL) contemporary able to activate the fiber surface and deposit on it reactive monomers, such as methyl methacrylate (MMA), (3-aminopropyl)triethoxysilane (APTES), and (3-glycidyloxypropyl)trimethoxysilane (GLYMO). Unmodified and surface modified fibers were characterized and compared in terms of thermal behavior and morphological features. Long-fiber eco-composites were then prepared by a suitable compression molding procedure and characterized by thermal, morphological and dynamic-mechanical analysis.

Eco-composites based on biodegradable polyester: chemical modification and plasma treatment of hemp fiber reinforcement

Conzatti L;Brunengo E;Utzeri R;Stagnaro P
2019

Abstract

The present contribution focus on eco-composites based on a commercial bio-polyester (PBAT) and high amounts of raw HFs. To promote the adhesion between the polyester matrix and the fibrous reinforcement, the fiber surface was treated with suitable coupling agents. Two different experimental strategies were explored: i) chemical modification of HFs by using PBAT macrocyclic oligomers (MCOs) as the coupling agent [1]; and ii) plasma treatment through a novel soft plasma jet device (developed by Nadir SrL) contemporary able to activate the fiber surface and deposit on it reactive monomers, such as methyl methacrylate (MMA), (3-aminopropyl)triethoxysilane (APTES), and (3-glycidyloxypropyl)trimethoxysilane (GLYMO). Unmodified and surface modified fibers were characterized and compared in terms of thermal behavior and morphological features. Long-fiber eco-composites were then prepared by a suitable compression molding procedure and characterized by thermal, morphological and dynamic-mechanical analysis.
2019
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Istituto di Scienze e Tecnologie Chimiche "Giulio Natta" - SCITEC
Natural fibers
Eco-composites
surface modification
plasma
final properties
File in questo prodotto:
File Dimensione Formato  
prod_420629-doc_149156.pdf

solo utenti autorizzati

Descrizione: abstract pubblicato su atti
Tipologia: Versione Editoriale (PDF)
Dimensione 609.72 kB
Formato Adobe PDF
609.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375831
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact