The occupied and unoccupied electronic structures of three highly popular, closed shell organoiron complexes ([Fe(CO)(5)], [(eta(5)-C5H5 )Fe(CO)(mu-CO)](2), and [(eta(5)-C5H5)(2)Fe]) have been theoretically investigated by taking advantage of density functional theory (DFT) calculations coupled to the isolobal analogy (Elian et al. Inorg. Chem. 1976, 15, 1148). The adopted approach allowed us to look into the relative role played by the ligand -> Fe donation and the Fe -> ligand back-donation in title molecules, as well as to investigate how CO- (terminal or bridging) and [(eta(5)-C5H5)](-)-based pi* orbitals compete when these two ligands are simultaneously present as in [(eta(5)-C5H5)Fe(CO)(mu-CO)](2). Insights into the nature and the strength of the bonding between Fe and the C donor atoms have been gained by exploiting the Nalewajski-Mrozek bond multiplicity index (Nalewajski et al. Int. J. Quantum Chem. 1994, 51, 187), which have been found especially sensitive even to tiny bond distance variations. The bonding picture emerging from ground state DFT results proved fruitful to guide the assignment of original, high-resolution, gas-phase L-2,L-3-edges X-ray absorption spectra of the title molecules, which have been modeled by the two-component relativistic time-dependent DFT including spin orbit coupling and correlation effects and taking advantage of the full use of symmetry. Assignments alternative to those reported in the literature for both [Fe(CO)(5)] and [(eta(5)-C5H5)(2)Fe] are herein proposed. Despite the high popularity of the investigated molecules, the complementary use of symmetry, orbital, and spectroscopy allowed us to further look into the metal-ligand symmetry-restricted-covalency and the differential-orbital covalency, which characterize them.

Comparative Experimental and Theoretical Study of the Fe L-2,L-3-Edges X-ray Absorption Spectroscopy in Three Highly Popular, Low-Spin Organoiron Complexes: [Fe(CO)(5)], [(eta(5)-C5H5)Fe(CO)(mu-CO)](2), and [(eta(5)-C5H5)(2)Fe]

de Simone M;Coreno M;Casarin M
2019

Abstract

The occupied and unoccupied electronic structures of three highly popular, closed shell organoiron complexes ([Fe(CO)(5)], [(eta(5)-C5H5 )Fe(CO)(mu-CO)](2), and [(eta(5)-C5H5)(2)Fe]) have been theoretically investigated by taking advantage of density functional theory (DFT) calculations coupled to the isolobal analogy (Elian et al. Inorg. Chem. 1976, 15, 1148). The adopted approach allowed us to look into the relative role played by the ligand -> Fe donation and the Fe -> ligand back-donation in title molecules, as well as to investigate how CO- (terminal or bridging) and [(eta(5)-C5H5)](-)-based pi* orbitals compete when these two ligands are simultaneously present as in [(eta(5)-C5H5)Fe(CO)(mu-CO)](2). Insights into the nature and the strength of the bonding between Fe and the C donor atoms have been gained by exploiting the Nalewajski-Mrozek bond multiplicity index (Nalewajski et al. Int. J. Quantum Chem. 1994, 51, 187), which have been found especially sensitive even to tiny bond distance variations. The bonding picture emerging from ground state DFT results proved fruitful to guide the assignment of original, high-resolution, gas-phase L-2,L-3-edges X-ray absorption spectra of the title molecules, which have been modeled by the two-component relativistic time-dependent DFT including spin orbit coupling and correlation effects and taking advantage of the full use of symmetry. Assignments alternative to those reported in the literature for both [Fe(CO)(5)] and [(eta(5)-C5H5)(2)Fe] are herein proposed. Despite the high popularity of the investigated molecules, the complementary use of symmetry, orbital, and spectroscopy allowed us to further look into the metal-ligand symmetry-restricted-covalency and the differential-orbital covalency, which characterize them.
2019
Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia - ICMATE
Istituto di Struttura della Materia - ISM - Sede Roma Tor Vergata
Istituto Officina dei Materiali - IOM -
Fe L23 edge
XAS
density functional theory
gas phase
High Resolution X-Ray Absorption Spectroscopy
File in questo prodotto:
File Dimensione Formato  
prod_420662-doc_150769.pdf

solo utenti autorizzati

Descrizione: Comparative Experimental and Theoretical Study of the Fe L-2,L-3-Edges X-ray Absorption Spectroscopy.....
Tipologia: Versione Editoriale (PDF)
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/375864
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact