Rationale: fac-[Re(CO)3(PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine (1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. Methods: The release of CO has been investigated by means of product ion spectrometry of electrospray ionization (ESI)-generated [M + H]+ species, produced by multiple collisional experiments, using an ion trap mass spectrometer. Results: Tandem mass spectrometry applied to the protonated species [Re(CO)3(PO)(X) + H]+ of seven complexes (those including X = OH2 (1), isonitrile (2,3), imidazole (4), pyridine (5) and phosphine (6, 7)) shows initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally activated decomposition processes involving CO, and compared with those involving X groups.
Electrospray ionization study of tricarbonyl fac-[Re(CO)3(PO)(X)]- type complexes: influence of ancillary co-ligands in the release of carbon monoxide
Tisato F;Porchia M;Seraglia R;
2018
Abstract
Rationale: fac-[Re(CO)3(PO)(X)]-type complexes (PO = chelated bidentate tertiary phosphine (1-), X = various neutral, mono-dentate ligands) represent a class of compounds that meets the synthetic criteria for the preparation of potential carbon monoxide (CO) release molecules (CORMs) for medicinal application. The aim of our investigation was to achieve qualitative information whether the nature of the ancillary X ligand might influence the release of CO. Methods: The release of CO has been investigated by means of product ion spectrometry of electrospray ionization (ESI)-generated [M + H]+ species, produced by multiple collisional experiments, using an ion trap mass spectrometer. Results: Tandem mass spectrometry applied to the protonated species [Re(CO)3(PO)(X) + H]+ of seven complexes (those including X = OH2 (1), isonitrile (2,3), imidazole (4), pyridine (5) and phosphine (6, 7)) shows initial loss of coordinated water (1) or pyridine (5), whereas the majority of investigated entries display initial, sequential release of CO groups. The energetics of CO release have been investigated by breakdown curves for selected collisionally activated decomposition processes involving CO, and compared with those involving X groups.File | Dimensione | Formato | |
---|---|---|---|
prod_388884-doc_134300.pdf
solo utenti autorizzati
Descrizione: Electrospray ionization study of tricarbonyl...
Tipologia:
Versione Editoriale (PDF)
Dimensione
634.59 kB
Formato
Adobe PDF
|
634.59 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.