In this paper, we introduce a simple, noniterative algorithm to estimate the effective dielectric properties of unknown targets from the measurements of their backscattered fields. The proposed approach relies on the virtual experiments concept, as it exploits a combination of the incident fields to be able to focus the exciting field on a certain region. Then, it associates the effective parameters to the permittivity and conductivity values that minimize the mean square error between the virtual scattered field (obtained by recombining the measured data) and the field scattered by a homogeneous dielectric cylinder centered on the target, having approximately the same area. The center of this effective scatterer and its radius can be estimated with a qualitative imaging algorithm or can be given as a priori information. Notably, by properly designing the virtual incident fields, the proposed method can easily handle the case of multiple targets. The effectiveness of the method is assessed by both numerical and experimental examples.

A Simple Approach for Estimating the Effective Electric Parameters of 2-D Targets

Crocco Lorenzo
2018

Abstract

In this paper, we introduce a simple, noniterative algorithm to estimate the effective dielectric properties of unknown targets from the measurements of their backscattered fields. The proposed approach relies on the virtual experiments concept, as it exploits a combination of the incident fields to be able to focus the exciting field on a certain region. Then, it associates the effective parameters to the permittivity and conductivity values that minimize the mean square error between the virtual scattered field (obtained by recombining the measured data) and the field scattered by a homogeneous dielectric cylinder centered on the target, having approximately the same area. The center of this effective scatterer and its radius can be estimated with a qualitative imaging algorithm or can be given as a priori information. Notably, by properly designing the virtual incident fields, the proposed method can easily handle the case of multiple targets. The effectiveness of the method is assessed by both numerical and experimental examples.
2018
Istituto per il Rilevamento Elettromagnetico dell'Ambiente - IREA
Linear sampling method (LSM)
object-based inversion
orthogonality sampling method (OSM)
qualitative microwave imaging (MWI)
virtual experiments
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376030
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 5
social impact