Owing to the increasing concerns on the environment, climate change, and limited natural resources, there are currently considerable efforts applied to produce chemicals and materials from renewable biomass. While initial emphasis has been placed on biofuel production from food plant sugars, the competition between crop usage for food and non-food applications has promoted research efforts to genetically improve yield and quality-related traits for biorefining applications. This chapter summarizes the potential of genetic and biotechnological strategies for improving plant biomass yields and quality-related traits and for breeding varieties more suitable to meet biorefining applications. Attempts were also made to provide a description on the genetic and molecular mechanisms affecting starch, cell wall composition and architecture, and oils synthesis and deposition, including genetic strategies to modify these traits. Similarly, the chapter covers the genetic strategies to improve yields by emphasizing the efforts done to identifying genetic variation and gene(s) governing critical morphological, structural, and physiological traits that in turn influence biomass yields. Finally, in the chapter it is suggested that knowledge of plant biosynthetic pathways will eventually provide valuable opportunities for metabolic engineering, as well as access to chemical transformations unique to plants for breeding varieties with built-in new traits.

Genetic Strategies to Enhance Plant Biomass Yield and Quality- Related Traits for Bio-Renewable Fuel and Chemical Productions

Massimiliano Lauria;
2015

Abstract

Owing to the increasing concerns on the environment, climate change, and limited natural resources, there are currently considerable efforts applied to produce chemicals and materials from renewable biomass. While initial emphasis has been placed on biofuel production from food plant sugars, the competition between crop usage for food and non-food applications has promoted research efforts to genetically improve yield and quality-related traits for biorefining applications. This chapter summarizes the potential of genetic and biotechnological strategies for improving plant biomass yields and quality-related traits and for breeding varieties more suitable to meet biorefining applications. Attempts were also made to provide a description on the genetic and molecular mechanisms affecting starch, cell wall composition and architecture, and oils synthesis and deposition, including genetic strategies to modify these traits. Similarly, the chapter covers the genetic strategies to improve yields by emphasizing the efforts done to identifying genetic variation and gene(s) governing critical morphological, structural, and physiological traits that in turn influence biomass yields. Finally, in the chapter it is suggested that knowledge of plant biosynthetic pathways will eventually provide valuable opportunities for metabolic engineering, as well as access to chemical transformations unique to plants for breeding varieties with built-in new traits.
2015
BIOLOGIA E BIOTECNOLOGIA AGRARIA
Starch biosynthesis
cell wall and compositions
gene regulation
signal transduction network
genome editing
yield genes
sink strength
transgenic plants
metabolic engineering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact