Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high precision in the process. In this context, the adoption of quantum resources promises a substantial boost in achievable performances with respect to the classical case. However, several open problems remain to be addressed in the multi-parameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test novel efficient methodologies that can be employed in this general framework. We report the experimental implementation of a reconfigurable integrated multimode interferometer designed for simultaneous estimation of two optical phases. We verify the high-fidelity operation of the implemented device and demonstrate quantum-enhanced performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigur-ability level, and represents a powerful platform to investigate the multiparameter estimation scenario. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
Experimental multiphase estimation on a chip
Corrielli Giacomo;Crespi Andrea;Osellame Roberto;
2019
Abstract
Multiparameter estimation is a general problem that aims at measuring unknown physical quantities, obtaining high precision in the process. In this context, the adoption of quantum resources promises a substantial boost in achievable performances with respect to the classical case. However, several open problems remain to be addressed in the multi-parameter scenario. A crucial requirement is the identification of suitable platforms to develop and experimentally test novel efficient methodologies that can be employed in this general framework. We report the experimental implementation of a reconfigurable integrated multimode interferometer designed for simultaneous estimation of two optical phases. We verify the high-fidelity operation of the implemented device and demonstrate quantum-enhanced performances in two-phase estimation with respect to the best classical case, post-selected to the number of detected coincidences. This device can be employed to test general adaptive multiphase protocols due to its high reconfigur-ability level, and represents a powerful platform to investigate the multiparameter estimation scenario. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing AgreementI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.