Magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric activity in the brain from non-invasive measurements of the magnetic field induced by neural sources. The solution of this ill-posed, ill-conditioned inverse problem is usually dealt with using regularization techniques that are often time-consuming, and computationally and memory storage demanding. In this paper we analyze how a slimmer procedure, random sampling, affects the estimation of the brain activity generated by both synthetic and real sources.

Less Is Enough: Assessment of the Random Sampling Method for the Analysis of Magnetoencephalography (MEG) Data

Annalisa Pascarella;
2019

Abstract

Magnetoencephalography (MEG) aims at reconstructing the unknown neuroelectric activity in the brain from non-invasive measurements of the magnetic field induced by neural sources. The solution of this ill-posed, ill-conditioned inverse problem is usually dealt with using regularization techniques that are often time-consuming, and computationally and memory storage demanding. In this paper we analyze how a slimmer procedure, random sampling, affects the estimation of the brain activity generated by both synthetic and real sources.
2019
Istituto Applicazioni del Calcolo ''Mauro Picone''
inverse problem; random sampling; neuroimaging; magnetoencephalography
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact