The externally applied loop voltage, required to drive current carrying magnetic configurations, such as tokamaks or reversed field pinches (RFP), can induce currents between the plasma and the surrounding conducting components, such as limiters, divertor sections, stabilizing plates or enclosing stabilizing shells with insulated electrical gaps. An appropriate modeling of this problem can quantify these currents and give constraints for the design of new devices. In this paper a methodology based on lumped element circuit is used to evaluate this problem for the case of in vessel components of the RFX-mod2, which led to a redesign of the electrical connections of plasma facing components. In the new design some parts, having applied potential in the kV range, are still exposed to the weakly ionized scrape off plasma. The process of arc formation between them and their prevention had been experimentally investigated and possible arc suppression strategies identified.

Design constraints on new vacuum components of RFX-mod2 upgrade using electrical modeling of reversed field pinch plasma

Zuin M;Marrelli L;Spolaore M;Martines E
2018

Abstract

The externally applied loop voltage, required to drive current carrying magnetic configurations, such as tokamaks or reversed field pinches (RFP), can induce currents between the plasma and the surrounding conducting components, such as limiters, divertor sections, stabilizing plates or enclosing stabilizing shells with insulated electrical gaps. An appropriate modeling of this problem can quantify these currents and give constraints for the design of new devices. In this paper a methodology based on lumped element circuit is used to evaluate this problem for the case of in vessel components of the RFX-mod2, which led to a redesign of the electrical connections of plasma facing components. In the new design some parts, having applied potential in the kV range, are still exposed to the weakly ionized scrape off plasma. The process of arc formation between them and their prevention had been experimentally investigated and possible arc suppression strategies identified.
2018
Istituto gas ionizzati - IGI - Sede Padova
Arc formation
Halo current
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376682
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? ND
social impact