Polar lacunar spinels, such as GaV4S8 and GaV4Se8, were proposed to host skyrmion phases under magnetic field. In this work, we put forward, as a candidate for Néel-type skyrmion lattice, the isostructural GaMo4S8, which is systematically studied via both first-principles calculations and Monte Carlo simulations of a model Hamiltonian. Electric polarization, driven by the Jahn-Teller distortion, is predicted to arise in GaMo4S8, showing a comparable size but an opposite sign with respect to that evaluated in V-based counterparts and explained in terms of different electron counting arguments and resulting distortions. Interestingly, a larger spin-orbit coupling of 4d orbitals with respect to 3d orbitals in vanadium spinels leads to stronger Dzyaloshinskii-Moriya interactions, which are beneficial to stabilize a cycloidal spin texture, as well as smaller-sized skyrmions (radius<10nm). Furthermore, the possibly large exchange anisotropy of GaMo4S8 may lead to a ferroelectric-ferromagnetic ground state as an alternative to the ferroelectric-skyrmionic one, thus calling for further experimental verification.

Possible emergence of a skyrmion phase in ferroelectric GaM o4 S8

Barone P;Picozzi S
2019

Abstract

Polar lacunar spinels, such as GaV4S8 and GaV4Se8, were proposed to host skyrmion phases under magnetic field. In this work, we put forward, as a candidate for Néel-type skyrmion lattice, the isostructural GaMo4S8, which is systematically studied via both first-principles calculations and Monte Carlo simulations of a model Hamiltonian. Electric polarization, driven by the Jahn-Teller distortion, is predicted to arise in GaMo4S8, showing a comparable size but an opposite sign with respect to that evaluated in V-based counterparts and explained in terms of different electron counting arguments and resulting distortions. Interestingly, a larger spin-orbit coupling of 4d orbitals with respect to 3d orbitals in vanadium spinels leads to stronger Dzyaloshinskii-Moriya interactions, which are beneficial to stabilize a cycloidal spin texture, as well as smaller-sized skyrmions (radius<10nm). Furthermore, the possibly large exchange anisotropy of GaMo4S8 may lead to a ferroelectric-ferromagnetic ground state as an alternative to the ferroelectric-skyrmionic one, thus calling for further experimental verification.
2019
Istituto Superconduttori, materiali innovativi e dispositivi - SPIN
Magnets | Domain walls | Magnetic skyrmions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/376853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? ND
social impact