In order to study hemodynamic changes involved in muscular metabolism by means of time domain fNIRS, we need to discriminate in the measured signal contributions coming from different depths. Muscles are, in fact, typically located under other tissues, e.g. skin and fat. In this paper, we study the possibility to exploit a previously proposed method for analyzing time-resolved fNIRS measurements in a two-layer structure with a thin superficial layer. This method is based on the calculation of the time-dependent mean partial pathlengths. We validated it by simulating venous and arterial arm cuff occlusions and then applied it on in vivo measurements. (C) 2016 Optical Society of America
Effect of a thin superficial layer on the estimate of hemodynamic changes in a two-layer medium by time domain NIRS
Torricelli Alessandro;Spinelli Lorenzo
2016
Abstract
In order to study hemodynamic changes involved in muscular metabolism by means of time domain fNIRS, we need to discriminate in the measured signal contributions coming from different depths. Muscles are, in fact, typically located under other tissues, e.g. skin and fat. In this paper, we study the possibility to exploit a previously proposed method for analyzing time-resolved fNIRS measurements in a two-layer structure with a thin superficial layer. This method is based on the calculation of the time-dependent mean partial pathlengths. We validated it by simulating venous and arterial arm cuff occlusions and then applied it on in vivo measurements. (C) 2016 Optical Society of AmericaI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.