In recent years, surface-enhanced Raman scattering (SERS) of a molecule/metal-semiconductor hybrid system has attracted considerable interest and regarded as the synergetic contribution of the electromagnetic and chemical enhancements from the incorporation of noble metal into semiconductor nanomaterials. However, the underlying mechanism is still to be revealed in detail. Herein, we report an irreversible accumulated SERS behavior induced by near-infrared (NIR) light irradiating on a 4-mercaptobenzoic acid linked with silver and silver-doped titanium dioxide (4MBA/Ag/Ag-doped TiO2) hybrid system. With increasing irradiation time, the SERS intensity of 4MBA shows an irreversible exponential increase, and the Raman signal of the Ag/Ag-doped TiO2 substrate displays an exponential decrease. A microscopic understanding of the time-dependent SERS behavior is derived based on the microanalysis of the Ag/Ag-doped TiO2 nanostructure and the molecular dynamics, which is attributed to three factors: (1) higher crystallinity of Ag/Ag-doped TiO2 substrate; (2) photo-induced charge transfer; (3) charge- induced molecular reorientation.

Irreversible accumulated SERS behavior of the molecule-linked silver and silver-doped titanium dioxide hybrid system

Lucia Petti;Pasquale Mormile
2020

Abstract

In recent years, surface-enhanced Raman scattering (SERS) of a molecule/metal-semiconductor hybrid system has attracted considerable interest and regarded as the synergetic contribution of the electromagnetic and chemical enhancements from the incorporation of noble metal into semiconductor nanomaterials. However, the underlying mechanism is still to be revealed in detail. Herein, we report an irreversible accumulated SERS behavior induced by near-infrared (NIR) light irradiating on a 4-mercaptobenzoic acid linked with silver and silver-doped titanium dioxide (4MBA/Ag/Ag-doped TiO2) hybrid system. With increasing irradiation time, the SERS intensity of 4MBA shows an irreversible exponential increase, and the Raman signal of the Ag/Ag-doped TiO2 substrate displays an exponential decrease. A microscopic understanding of the time-dependent SERS behavior is derived based on the microanalysis of the Ag/Ag-doped TiO2 nanostructure and the molecular dynamics, which is attributed to three factors: (1) higher crystallinity of Ag/Ag-doped TiO2 substrate; (2) photo-induced charge transfer; (3) charge- induced molecular reorientation.
2020
Istituto di Scienze Applicate e Sistemi Intelligenti "Eduardo Caianiello" - ISASI
SERS
PLASMONICS
File in questo prodotto:
File Dimensione Formato  
prod_420063-doc_148715.pdf

accesso aperto

Descrizione: Zhou_et_al-2020-Nature_Communications.pdf
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.7 MB
Formato Adobe PDF
3.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 147
  • ???jsp.display-item.citation.isi??? 144
social impact