In this note, the area-time complexity of a VLSI counter is studied. Both a lower and an upper bound are derived which meet to within the exponent of the logarithmic factor. The proposed VLSI design derives from the parallel counter presented by Muller and Preparata, which requires O(log n) delay time and O(n) number of elements. An area of order n (log)^2 n will be shown to suffice for the VLSI network and a lower bound to (AT)^2 of order n log n will also be proved.

A note on the VLSI counter

Codenotti B;
1986

Abstract

In this note, the area-time complexity of a VLSI counter is studied. Both a lower and an upper bound are derived which meet to within the exponent of the logarithmic factor. The proposed VLSI design derives from the parallel counter presented by Muller and Preparata, which requires O(log n) delay time and O(n) number of elements. An area of order n (log)^2 n will be shown to suffice for the VLSI network and a lower bound to (AT)^2 of order n log n will also be proved.
1986
Istituto di informatica e telematica - IIT
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo" - ISTI
VLSI ModeI
Area-time complexity
Counter
Lower bound
VLSI Systems
File in questo prodotto:
File Dimensione Formato  
prod_420086-doc_148729.pdf

solo utenti autorizzati

Descrizione: A note on the VLSI counter
Tipologia: Versione Editoriale (PDF)
Dimensione 354.84 kB
Formato Adobe PDF
354.84 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377409
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact