The present study focuses on manganese-containing inclusions identified in late-Antique glass tesserae, light brown/amber and purple in colour, from Padova (Italy), in order to clarify the nature of these inclusions, never identified in glass mosaics until now, and provide new insights on the production technologies of such kinds of tesserae. Multi-methodological investigations on manganese-containing inclusions were carried out in this work by means of optical microscopy (OM), scanning electron microscopy (SEM), micro-X-ray di_raction (micro-XRD), electron backscattered di_raction (EBSD), electron microprobe (EMPA), and micro-Raman spectroscopy. The combination of analytical results shows that inclusions are crystalline, new-formed phases, mainly composed of manganese, silica and calcium, and are mineralogically ascribed as a member of the braunite-neltnerite series, with unit-cell parameters closer to those of neltnerite. However, the low Ca content makes such crystalline compounds more similar to braunite, in more detail, they could be described as Ca-rich braunite. The occurrence of such crystalline phase allows us to constrain melting temperatures between 1000 and 1150 oC, and to hypothesize pyrolusite, MnO2, as the source of manganese. In addition, it is worth underlining that the same phase is identified in tesserae characterised by di_erent colours (light brown/amber vs purple due to di_erent manganese/iron ratios), glassy matrices (soda-lime-lead vs soda-lime) and opacifiers (cassiterite vs no opacifier). This suggests that its occurrence is not influenced by the "chemical environment", revealing these manganese-containing inclusions as a new potential technological marker.

Manganese-containing inclusions in late-antique glass mosaic tesserae: A new technological marker?

Peruzzo L
2020

Abstract

The present study focuses on manganese-containing inclusions identified in late-Antique glass tesserae, light brown/amber and purple in colour, from Padova (Italy), in order to clarify the nature of these inclusions, never identified in glass mosaics until now, and provide new insights on the production technologies of such kinds of tesserae. Multi-methodological investigations on manganese-containing inclusions were carried out in this work by means of optical microscopy (OM), scanning electron microscopy (SEM), micro-X-ray di_raction (micro-XRD), electron backscattered di_raction (EBSD), electron microprobe (EMPA), and micro-Raman spectroscopy. The combination of analytical results shows that inclusions are crystalline, new-formed phases, mainly composed of manganese, silica and calcium, and are mineralogically ascribed as a member of the braunite-neltnerite series, with unit-cell parameters closer to those of neltnerite. However, the low Ca content makes such crystalline compounds more similar to braunite, in more detail, they could be described as Ca-rich braunite. The occurrence of such crystalline phase allows us to constrain melting temperatures between 1000 and 1150 oC, and to hypothesize pyrolusite, MnO2, as the source of manganese. In addition, it is worth underlining that the same phase is identified in tesserae characterised by di_erent colours (light brown/amber vs purple due to di_erent manganese/iron ratios), glassy matrices (soda-lime-lead vs soda-lime) and opacifiers (cassiterite vs no opacifier). This suggests that its occurrence is not influenced by the "chemical environment", revealing these manganese-containing inclusions as a new potential technological marker.
2020
Istituto di Geoscienze e Georisorse - IGG - Sede Pisa
late-Antique glass tesserae; manganese; crystalline inclusions; OM; SEM-EDS-EBSD; micro-XRD; EMPA; micro-Raman spectroscopy; braunite-neltnerite; melting temperature
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377465
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact