Disordered materials with new optical properties are capturing the interest of the scientific community due to the observation of innovative phenomena. We present the realization of novel optical materials obtained by fractal arrays of silicon nanowires (NWs) synthesized at low cost, without mask or lithography processes and decorated with Er:Y2O3, one of the most promising material for the integration of erbium in photonics. The investigated structural properties of the fractal Er:Y2O3/NWs demonstrate that the fractal morphology can be tuned as a function of the sputtering deposition angle (from 5 degrees to 15 degrees) of the Er:Y2O3 layer. We demonstrate that by this novel approach, it is possible to simply change the Er emission intensity by controlling the fractal morphology. Indeed, we achieved the increment of Er emission at 560 nm, opening new perspectives on the control and enhancement of the optical response of novel disordered materials.

Erbium emission in Er:Y2O3 decorated fractal arrays of silicon nanowires

Leonardi Antonio Alessio;Fazio Barbara;Miritello Maria;Irrera Alessia
2020

Abstract

Disordered materials with new optical properties are capturing the interest of the scientific community due to the observation of innovative phenomena. We present the realization of novel optical materials obtained by fractal arrays of silicon nanowires (NWs) synthesized at low cost, without mask or lithography processes and decorated with Er:Y2O3, one of the most promising material for the integration of erbium in photonics. The investigated structural properties of the fractal Er:Y2O3/NWs demonstrate that the fractal morphology can be tuned as a function of the sputtering deposition angle (from 5 degrees to 15 degrees) of the Er:Y2O3 layer. We demonstrate that by this novel approach, it is possible to simply change the Er emission intensity by controlling the fractal morphology. Indeed, we achieved the increment of Er emission at 560 nm, opening new perspectives on the control and enhancement of the optical response of novel disordered materials.
2020
Istituto per la Microelettronica e Microsistemi - IMM
Istituto per i Processi Chimico-Fisici - IPCF
Silicon
Erbium
Nanowires
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377542
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact