According to recommendations of the international community of phytoplankton functional type algorithm developers, a set of experiments on marine algal cultures was conducted to (1) investigate uncertainties and limits in phytoplankton group discrimination from hyperspectral light absorption properties of assemblages with mixed taxonomic composition, and (2) evaluate the extent to which modifications of the absorption spectral features due to variable light conditions affect the optical discrimination of phytoplankton. Results showed that spectral absorption signatures of multiple species can be extracted from mixed assemblages, even at low relative contributions. Errors in retrieved pigment abundances are, however, influenced by the co-occurrence of species with similar spectral features. Plasticity of absorption spectra due to changes in light conditions weakly affects interspecific differences, with errors <21% for retrievals of pigment concentrations from mixed assemblages. (C) 2017 Optical Society of America

On the discrimination of multiple phytoplankton groups from light absorption spectra of assemblages with mixed taxonomic composition and variable light conditions

Organelli Emanuele;
2017

Abstract

According to recommendations of the international community of phytoplankton functional type algorithm developers, a set of experiments on marine algal cultures was conducted to (1) investigate uncertainties and limits in phytoplankton group discrimination from hyperspectral light absorption properties of assemblages with mixed taxonomic composition, and (2) evaluate the extent to which modifications of the absorption spectral features due to variable light conditions affect the optical discrimination of phytoplankton. Results showed that spectral absorption signatures of multiple species can be extracted from mixed assemblages, even at low relative contributions. Errors in retrieved pigment abundances are, however, influenced by the co-occurrence of species with similar spectral features. Plasticity of absorption spectra due to changes in light conditions weakly affects interspecific differences, with errors <21% for retrievals of pigment concentrations from mixed assemblages. (C) 2017 Optical Society of America
2017
Istituto di Scienze Marine - ISMAR
phytoplankton
diversity
optics
hyperspectral
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 23
social impact