This technical note derives stochastic realization and optimal smoothing algorithms for a class of Gaussian generalized reciprocal processes (GGRP). The note exploits the interplay between reciprocal processes and Markov bridges which underpin the GGRP model. A forward-backward algorithm for stochastic realization of GGRP is described. The form on the inverse covariance matrix for the GGRP is used, via Cholesky factorization, to derive a procedure for optimal (MMSE) smoothing of GGRP observed in noise. The note demonstrates that the associated smoothing error is also a GGRP with known covariance which may be used to assess the performance of smoothing as a function of the model parameters. A numerical example is provided to illustrate the performance of the MMSE smoother compared to those derived from compatible Markov and reciprocal model-based algorithms.

This technical note derives stochastic realization and optimal smoothing algorithms for a class of Gaussian generalized reciprocal processes (GGRP). The note exploits the interplay between reciprocal processes and Markov bridges which underpin the GGRP model. A forward-backward algorithm for stochastic realization of GGRP is described. The form on the inverse covariance matrix for the GGRP is used, via Cholesky factorization, to derive a procedure for optimal (MMSE) smoothing of GGRP observed in noise. The note demonstrates that the associated smoothing error is also a GGRP with known covariance which may be used to assess the performance of smoothing as a function of the model parameters. A numerical example is provided to illustrate the performance of the MMSE smoother compared to those derived from compatible Markov and reciprocal model-based algorithms.

State-Space Realizations and Optimal Smoothing for Gaussian Generalized Reciprocal Processes

Carravetta Francesco
2020

Abstract

This technical note derives stochastic realization and optimal smoothing algorithms for a class of Gaussian generalized reciprocal processes (GGRP). The note exploits the interplay between reciprocal processes and Markov bridges which underpin the GGRP model. A forward-backward algorithm for stochastic realization of GGRP is described. The form on the inverse covariance matrix for the GGRP is used, via Cholesky factorization, to derive a procedure for optimal (MMSE) smoothing of GGRP observed in noise. The note demonstrates that the associated smoothing error is also a GGRP with known covariance which may be used to assess the performance of smoothing as a function of the model parameters. A numerical example is provided to illustrate the performance of the MMSE smoother compared to those derived from compatible Markov and reciprocal model-based algorithms.
2020
Istituto di Analisi dei Sistemi ed Informatica ''Antonio Ruberti'' - IASI
This technical note derives stochastic realization and optimal smoothing algorithms for a class of Gaussian generalized reciprocal processes (GGRP). The note exploits the interplay between reciprocal processes and Markov bridges which underpin the GGRP model. A forward-backward algorithm for stochastic realization of GGRP is described. The form on the inverse covariance matrix for the GGRP is used, via Cholesky factorization, to derive a procedure for optimal (MMSE) smoothing of GGRP observed in noise. The note demonstrates that the associated smoothing error is also a GGRP with known covariance which may be used to assess the performance of smoothing as a function of the model parameters. A numerical example is provided to illustrate the performance of the MMSE smoother compared to those derived from compatible Markov and reciprocal model-based algorithms.
Smoothing methods
Markov processes
Target tracking
Graphical models
Bridges
Covariance matrices
Gaussian random processes
optimal smoothing
reciprocal processes (RP)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377834
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact