Conducting linen fabrics were prepared by the in situ oxidative polymerization of pyrrole using ferric chloride as the oxidant and anthraquinone-2,6-disulfonic acid disodium salt as the dopant to enhance conductivity. The effect of the pyrrole concentration on the final performance and properties of the conducting fabrics was evaluated. Scanning electron microscopy and light microscopy showed a polypyrrole layer deposited on the fiber surface associated with penetration into the bulk fiber at the highest concentrations of pyrrole. Saturation of the amorphous domains of the cellulose structure and coating of the fiber surface resulted in good electrical properties, heat development by the Joule effect and reduced moisture adsorption. The mechanical properties and electrical conductivity of the fabrics were affected by the strong acid conditions of the treatment, but significant electrical properties were achieved while preserving up to 70% of the original tensile strength.

Electrically conducting linen fabrics for technical applications

Caringella R;Patrucco A;Simionati M;Gavignano S;Mossotti R;Zoccola M;Tonin C;
2018

Abstract

Conducting linen fabrics were prepared by the in situ oxidative polymerization of pyrrole using ferric chloride as the oxidant and anthraquinone-2,6-disulfonic acid disodium salt as the dopant to enhance conductivity. The effect of the pyrrole concentration on the final performance and properties of the conducting fabrics was evaluated. Scanning electron microscopy and light microscopy showed a polypyrrole layer deposited on the fiber surface associated with penetration into the bulk fiber at the highest concentrations of pyrrole. Saturation of the amorphous domains of the cellulose structure and coating of the fiber surface resulted in good electrical properties, heat development by the Joule effect and reduced moisture adsorption. The mechanical properties and electrical conductivity of the fabrics were affected by the strong acid conditions of the treatment, but significant electrical properties were achieved while preserving up to 70% of the original tensile strength.
2018
Istituto per lo Studio delle Macromolecole - ISMAC - Sede Milano
Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato - STIIMA (ex ITIA)
chemistry
conductivity
finishing
linen
polymer formation
polypyrrole
surface modification
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377942
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 11
social impact