Efficient FRET systems are developed combining colloidal CdSe quantum dots (QDs) donors and BODIPY acceptors. To promote effective energy transfer in FRET architectures, the distance between the organic fluorophore and the QDs needs to be optimized by a careful system engineering. In this context, BODIPY dyes bearing amino-terminated functionalities are used in virtue of the high affinity of amine groups in coordinating the QD surface. A preliminary QD surface treatment with a short amine ligand is performed to favour the interaction with the organic fluorophores in solution. The successful coordination of the dye to the QD surface, accomplishing a short donor-acceptor distance, provides effective energy transfer already in solution, with efficiency of 76%. The efficiency further increases in solid state where the QDs and the dye are deposited as single coordinated units from solution, with a distance between the fluorophores down to 2.2 nm, demonstrating the effectiveness of the coupling strategy.

High Efficiency FRET Processes in BODIPY Functionalized Quantum Dot Architectures

Annamaria Panniello;Mariachiara Trapani;Massimiliano Cordaro;Chiara Ingrosso;Elisabetta Fanizza;Marinella Striccoli
2020

Abstract

Efficient FRET systems are developed combining colloidal CdSe quantum dots (QDs) donors and BODIPY acceptors. To promote effective energy transfer in FRET architectures, the distance between the organic fluorophore and the QDs needs to be optimized by a careful system engineering. In this context, BODIPY dyes bearing amino-terminated functionalities are used in virtue of the high affinity of amine groups in coordinating the QD surface. A preliminary QD surface treatment with a short amine ligand is performed to favour the interaction with the organic fluorophores in solution. The successful coordination of the dye to the QD surface, accomplishing a short donor-acceptor distance, provides effective energy transfer already in solution, with efficiency of 76%. The efficiency further increases in solid state where the QDs and the dye are deposited as single coordinated units from solution, with a distance between the fluorophores down to 2.2 nm, demonstrating the effectiveness of the coupling strategy.
2020
Istituto per i Processi Chimico-Fisici - IPCF
BODIPY functionalization
Energy Tra
FRET QD-Dye
Luminescence Decay Dynamics
Quantum Dots
File in questo prodotto:
File Dimensione Formato  
prod_431525-doc_154313.pdf

solo utenti autorizzati

Descrizione: A Panniello et al 2020
Tipologia: Versione Editoriale (PDF)
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/377982
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact