In this work, soft microgels of Poly(N-Isopropylacrylamide) (PNIPAm) at two different sizes and of interpenetrated polymer network (IPN) composed of PNIPAm and Poly(Acrylic Acid) (PAAc) were synthesized. Then, solutions of these different types of microgels have been spin-coated on glass substrates with different degrees of hydrophobicity. PNIPAm particles with a larger diameter form either patches or a continuous layer, where individual particles are still distinct, depending on the dispersion concentration and spin speed. On the other, PNIPAm particles with a smaller diameter and IPN particles form a continuous and smooth film, with a thickness depending on the dispersion concentration and spin-speed. The difference in morphology observed can be explained if one considers that the microgels may behave as colloidal particles or macromolecules, depending on their size and composition. Additionally, the microgel size and composition can also affect the stability of the depositions when rinsed in water. In particular, we find that the smooth and continuous films show a stimuli-dependent stability on parameters such as temperature and pH, while large particle layers are stable under any condition except on hydrophilic glass by washing at 50oC.

Formation and stability of smooth thin films with soft microgels made of poly(N-isopropylacrylamide) and poly(acrylic acid)

Buratti E;Dinelli F;Bertoldo M
2020

Abstract

In this work, soft microgels of Poly(N-Isopropylacrylamide) (PNIPAm) at two different sizes and of interpenetrated polymer network (IPN) composed of PNIPAm and Poly(Acrylic Acid) (PAAc) were synthesized. Then, solutions of these different types of microgels have been spin-coated on glass substrates with different degrees of hydrophobicity. PNIPAm particles with a larger diameter form either patches or a continuous layer, where individual particles are still distinct, depending on the dispersion concentration and spin speed. On the other, PNIPAm particles with a smaller diameter and IPN particles form a continuous and smooth film, with a thickness depending on the dispersion concentration and spin-speed. The difference in morphology observed can be explained if one considers that the microgels may behave as colloidal particles or macromolecules, depending on their size and composition. Additionally, the microgel size and composition can also affect the stability of the depositions when rinsed in water. In particular, we find that the smooth and continuous films show a stimuli-dependent stability on parameters such as temperature and pH, while large particle layers are stable under any condition except on hydrophilic glass by washing at 50oC.
2020
Istituto per la Sintesi Organica e la Fotoreattivita' - ISOF
Istituto dei Sistemi Complessi - ISC
Istituto Nazionale di Ottica - INO
microgels; PNIPAm; PAAc; IPN; thin films; spin-coating
File in questo prodotto:
File Dimensione Formato  
prod_437683-doc_156841.pdf

accesso aperto

Descrizione: Formation and stability of smooth thin films with soft microgels made of poly(N-isopropylacrylamide) and poly(acrylic acid)
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 4.76 MB
Formato Adobe PDF
4.76 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378007
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact