In this paper we provide emission estimates due to vehicular traffic via Generic Second Order Models. We generalize them to model road networks with merge and diverge junctions. The procedure consists on solving the Riemann Problem at junction assuming the maximization of the flow and a priority rule for the incoming roads. We provide some numerical results for a single-lane roundabout and we propose an application of the given procedure to estimate the production of nitrogen oxides (NOx) emission rates. In particular, we show that the presence of a traffic lights produces a 28% increase in the NOx emissions with respect to the roundabout.

Estimate of emissions on road networks via Generic Second Order Models

M Briani;
2023

Abstract

In this paper we provide emission estimates due to vehicular traffic via Generic Second Order Models. We generalize them to model road networks with merge and diverge junctions. The procedure consists on solving the Riemann Problem at junction assuming the maximization of the flow and a priority rule for the incoming roads. We provide some numerical results for a single-lane roundabout and we propose an application of the given procedure to estimate the production of nitrogen oxides (NOx) emission rates. In particular, we show that the presence of a traffic lights produces a 28% increase in the NOx emissions with respect to the roundabout.
2023
Istituto Applicazioni del Calcolo ''Mauro Picone''
Second order traffic models; road networks; Riemann problem; emissions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378009
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact