In this paper, a non-destructive technique based on the monitoring of the environmental vibrations of two strategic buildings by positioning accelerometers in well-defined points was used for fixing their dynamic behavior. The accelerometers measurements were elaborated through Operational Modal Analysis (OMA) techniques, in order to identify natural frequencies, damping coefficients, and modal shapes of the structure. Once these parameters have been determined, a numerical model calibrated on the identified frequencies and verified on the corresponding mode shapes was created for each building. The structural operational efficiency index of the buildings was determined by using the Seismic Model Ambient Vibration (SMAV) methodology, which allows us to evaluate their seismic vulnerability. The results obtained from the experimental analysis (on three different tests for each analyzed building) concern the frequencies and the modal shapes of the structure. They have been compared to the results of the finite element model, with a very small error, indicating a good quality of the analysis and also the possibility of using directly well-tuned models for verifying the structural operating indices.
Structural Operativity Evaluation of Strategic Buildings through Finite Element (FE) Models Validated by Operational Modal Analysis (OMA)
Vacca Vitantonio;
2020
Abstract
In this paper, a non-destructive technique based on the monitoring of the environmental vibrations of two strategic buildings by positioning accelerometers in well-defined points was used for fixing their dynamic behavior. The accelerometers measurements were elaborated through Operational Modal Analysis (OMA) techniques, in order to identify natural frequencies, damping coefficients, and modal shapes of the structure. Once these parameters have been determined, a numerical model calibrated on the identified frequencies and verified on the corresponding mode shapes was created for each building. The structural operational efficiency index of the buildings was determined by using the Seismic Model Ambient Vibration (SMAV) methodology, which allows us to evaluate their seismic vulnerability. The results obtained from the experimental analysis (on three different tests for each analyzed building) concern the frequencies and the modal shapes of the structure. They have been compared to the results of the finite element model, with a very small error, indicating a good quality of the analysis and also the possibility of using directly well-tuned models for verifying the structural operating indices.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.