Reliability, power consumption, and latency are the three main performance indicators of wireless sensor networks. Time slotted channel hopping (TSCH) is a promising technique introduced in the IEEE 802.15.4 standard that performs some steps ahead in the direction of the final dream to meet all the previous requirements at the same time. In this article, a simple and effective mathematical model is presented for TSCH that, starting from measurements performed on a real testbed, permits to characterize both the network and the surrounding environment. To better characterize power consumption, an experimental measurement campaign was purposely performed on OpenMote B devices. The model, which was checked against a real 6TiSCH implementation, can be employed to predict network behaviour when configuration parameters are varied, in such a way to satisfy different application contexts. Results show that, when one of the three above indices is privileged, unavoidably there is a worsening of the others.

Wireless Sensor Networks and TSCH: A Compromise Between Reliability, Power Consumption, and Latency

Scanzio Stefano;Cena Gianluca;Valenzano Adriano;Zunino Claudio
2020

Abstract

Reliability, power consumption, and latency are the three main performance indicators of wireless sensor networks. Time slotted channel hopping (TSCH) is a promising technique introduced in the IEEE 802.15.4 standard that performs some steps ahead in the direction of the final dream to meet all the previous requirements at the same time. In this article, a simple and effective mathematical model is presented for TSCH that, starting from measurements performed on a real testbed, permits to characterize both the network and the surrounding environment. To better characterize power consumption, an experimental measurement campaign was purposely performed on OpenMote B devices. The model, which was checked against a real 6TiSCH implementation, can be employed to predict network behaviour when configuration parameters are varied, in such a way to satisfy different application contexts. Results show that, when one of the three above indices is privileged, unavoidably there is a worsening of the others.
2020
Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni - IEIIT
Power demand
Wireless sensor networks
IEEE 802
15 Standard
Protocols
Internet of Things
Wireless communication
Reliability
Energy consumption
Internet of Things
low latency
power consumption
reliability
wireless sensor networks
time slotted channel hopping (TSCH)
TSCH
time slotted channel hopping
time slotted channel hopping; reliability; power consumption; lat
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378197
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact