The LncRNA my-heart (Mhrt) and the chromatin remodeler Brg1 inhibit each other to respectively prevent or favor the maladaptive ?-myosin-heavy-chain (Myh6) to ?-myosin-heavy-chain (Myh7) switch, so their balance crucially guides the outcome of cardiac remodeling under stress conditions. Even though triiodothyronine (T3) has long been recognized as a critical regulator of the cardiac Myh isoform composition, its role as a modulator of the Mhrt/Brg1 axis is still unexplored. Here the effect of T3 on the Mhrt/Brg1 regulatory circuit has been analyzed in relation with chromatin remodeling and previously identified T3-dependent miRNAs. The expression levels of Mhrt, Brg1 and Myh6/Myh7 have been assessed in rat models of hyperthyroidism or acute myocardial ischemia/reperfusion (IR) treated with T3 replacement therapy. To gain mechanistic insights, in silico analyses and site-directed mutagenesis have been adopted in combination with gene reporter assays and loss or gain of function strategies in cultured cardiomyocytes. Our results indicate a pivotal role of Mhrt over-expression in the T3-dependent regulation of Myh switch. Mechanistically, T3 activates the Mhrt promoter at two putative thyroid hormone responsive elements (TRE) located in a crucial region that is necessary for both Mhrt activation and Brg1-dependent Mhrt repression. This newly identified T3 mode of action requires DNA chromatinization and is critically involved in mitigating the repressive function of the Brg1 protein on Mhrt promoter. In addition, T3 is also able to prevent the Brg1 over-expression observed in the post-IR setting through a pathway that might entail the T3-mediated up-regulation of miR-208a. Taken together, our data evidence a novel T3-responsive network of cross-talking epigenetic factors that dictates the cardiac Myh composition and could be of great translational relevance.

T3 Critically Affects the Mhrt/Brg1 Axis to Regulate the Cardiac MHC Switch: Role of an Epigenetic Cross-Talk

Forini F
Co-primo
Conceptualization
;
Nicolini G
Co-primo
Data Curation
;
Kusmic C
Data Curation
;
D'Aurizio R
Data Curation
;
Mercatanti A
Data Curation
;
Iervasi G
Penultimo
Funding Acquisition
;
Pitto L
Ultimo
Funding Acquisition
2020

Abstract

The LncRNA my-heart (Mhrt) and the chromatin remodeler Brg1 inhibit each other to respectively prevent or favor the maladaptive ?-myosin-heavy-chain (Myh6) to ?-myosin-heavy-chain (Myh7) switch, so their balance crucially guides the outcome of cardiac remodeling under stress conditions. Even though triiodothyronine (T3) has long been recognized as a critical regulator of the cardiac Myh isoform composition, its role as a modulator of the Mhrt/Brg1 axis is still unexplored. Here the effect of T3 on the Mhrt/Brg1 regulatory circuit has been analyzed in relation with chromatin remodeling and previously identified T3-dependent miRNAs. The expression levels of Mhrt, Brg1 and Myh6/Myh7 have been assessed in rat models of hyperthyroidism or acute myocardial ischemia/reperfusion (IR) treated with T3 replacement therapy. To gain mechanistic insights, in silico analyses and site-directed mutagenesis have been adopted in combination with gene reporter assays and loss or gain of function strategies in cultured cardiomyocytes. Our results indicate a pivotal role of Mhrt over-expression in the T3-dependent regulation of Myh switch. Mechanistically, T3 activates the Mhrt promoter at two putative thyroid hormone responsive elements (TRE) located in a crucial region that is necessary for both Mhrt activation and Brg1-dependent Mhrt repression. This newly identified T3 mode of action requires DNA chromatinization and is critically involved in mitigating the repressive function of the Brg1 protein on Mhrt promoter. In addition, T3 is also able to prevent the Brg1 over-expression observed in the post-IR setting through a pathway that might entail the T3-mediated up-regulation of miR-208a. Taken together, our data evidence a novel T3-responsive network of cross-talking epigenetic factors that dictates the cardiac Myh composition and could be of great translational relevance.
2020
Istituto di Fisiologia Clinica - IFC
Istituto di informatica e telematica - IIT
Brg1
cardiac remodeling
chromatin remodeling
long non-coding Mhrt
low T3 state
myosin heavy chain switch
T3 replacement
File in questo prodotto:
File Dimensione Formato  
prod_439283-doc_157599.pdf

accesso aperto

Descrizione: T3 Critically Affects the Mhrt/Brg1 Axis to Regulate the Cardiac MHC Switch: Role of an Epigenetic Cross-Talk
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/378269
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact