Otx1 and Otx2, the murine homologs of the Drosophila orthodenticle gene, play a remarkable role in specification and regionalization of forebrain and midbrain. Recently, genetic approaches have indicated that OTD, OTX1 and OTX2 have retained reciprocal functional equivalence in evolution, whereas their regulatory control has been remarkably modified. This suggests that during the evolution of the vertebrate brain, regulatory changes modulating the transcriptional and translational control of pre-existing gene functions might have favored the establishment of new morphogenetic pathways.

The Otx family

Simeone A;Acampora D
2002

Abstract

Otx1 and Otx2, the murine homologs of the Drosophila orthodenticle gene, play a remarkable role in specification and regionalization of forebrain and midbrain. Recently, genetic approaches have indicated that OTD, OTX1 and OTX2 have retained reciprocal functional equivalence in evolution, whereas their regulatory control has been remarkably modified. This suggests that during the evolution of the vertebrate brain, regulatory changes modulating the transcriptional and translational control of pre-existing gene functions might have favored the establishment of new morphogenetic pathways.
2002
Istituto di genetica e biofisica "Adriano Buzzati Traverso"- IGB - Sede Napoli
gastrulation
Otx regulatory contro
brain evolution
brain patterning
IsO positioning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14243/37836
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 96
social impact