Otx1 and Otx2, the murine homologs of the Drosophila orthodenticle gene, play a remarkable role in specification and regionalization of forebrain and midbrain. Recently, genetic approaches have indicated that OTD, OTX1 and OTX2 have retained reciprocal functional equivalence in evolution, whereas their regulatory control has been remarkably modified. This suggests that during the evolution of the vertebrate brain, regulatory changes modulating the transcriptional and translational control of pre-existing gene functions might have favored the establishment of new morphogenetic pathways.
The Otx family
Simeone A;Acampora D
2002
Abstract
Otx1 and Otx2, the murine homologs of the Drosophila orthodenticle gene, play a remarkable role in specification and regionalization of forebrain and midbrain. Recently, genetic approaches have indicated that OTD, OTX1 and OTX2 have retained reciprocal functional equivalence in evolution, whereas their regulatory control has been remarkably modified. This suggests that during the evolution of the vertebrate brain, regulatory changes modulating the transcriptional and translational control of pre-existing gene functions might have favored the establishment of new morphogenetic pathways.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.