Class 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems offer a unique protocol for genome editing in eukaryotic cells. The nuclease activity of Cas9 has been harnessed to perform precise genome editing by creating double-strand breaks. However, the nuclease activity of Cas9 can be triggered when there is imperfect complementarity between the RNA guide sequence and an off-target genomic site, which is a major limitation of the CRISPR technique for practical applications. Hence, understanding the binding mechanisms in CRISPR/Cas9 for predicting ways to increase cleavage specificity is a timely research target. One way to understand and tune the binding strength is to study wild-type and mutant Cas9, in complex with a guide RNA and a target DNA. We have performed classical all-atom MD simulations over a cumulative time scale of 13.5 ?s of CRISPR/Cas9 ternary complexes with the wild-type Cas9 from Streptococcus pyogenes and three of its mutants: K855A, H982A, and the combination K855A+H982A, selected from the outcome of experimental work. Our results reveal significant structural impact of the mutations, with implications for specificity. We find that the "unwound"part of the nontarget DNA strand exhibits enhanced flexibility in complexes with Cas9 mutants and tries to move away from the HNH/RuvC interface, where it is otherwise stabilized by electrostatic couplings in the wild-type complex. Our findings refine an electrostatic model by which cleavage specificity can be optimized through protein mutations.
Protein-Mutation-Induced Conformational Changes of the DNA and Nuclease Domain in CRISPR/Cas9 Systems by Molecular Dynamics Simulations
Di Felice R
2020
Abstract
Class 2 CRISPR (clustered regularly interspaced short palindromic repeats) systems offer a unique protocol for genome editing in eukaryotic cells. The nuclease activity of Cas9 has been harnessed to perform precise genome editing by creating double-strand breaks. However, the nuclease activity of Cas9 can be triggered when there is imperfect complementarity between the RNA guide sequence and an off-target genomic site, which is a major limitation of the CRISPR technique for practical applications. Hence, understanding the binding mechanisms in CRISPR/Cas9 for predicting ways to increase cleavage specificity is a timely research target. One way to understand and tune the binding strength is to study wild-type and mutant Cas9, in complex with a guide RNA and a target DNA. We have performed classical all-atom MD simulations over a cumulative time scale of 13.5 ?s of CRISPR/Cas9 ternary complexes with the wild-type Cas9 from Streptococcus pyogenes and three of its mutants: K855A, H982A, and the combination K855A+H982A, selected from the outcome of experimental work. Our results reveal significant structural impact of the mutations, with implications for specificity. We find that the "unwound"part of the nontarget DNA strand exhibits enhanced flexibility in complexes with Cas9 mutants and tries to move away from the HNH/RuvC interface, where it is otherwise stabilized by electrostatic couplings in the wild-type complex. Our findings refine an electrostatic model by which cleavage specificity can be optimized through protein mutations.File | Dimensione | Formato | |
---|---|---|---|
ray2020.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.09 MB
Formato
Adobe PDF
|
5.09 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.